Ito et al., 2023.Intensity Ratio of Kβ/Kα in Selected Elements from Mg to Cu, and the Chemical Effects of Cr Kα1,2 Diagram Lines and Cr Kβ/Kα Intensity Ratio in Cr Compounds. International Journal of Molecular Sciences, 24(6), 5570. | doi: | 10.3390/ijms24065570 | "https://doi.org/10.3390/ijms24065570"
Pinheiro et al., 2023. Angular distribution of characteristic X-rays following electron impact ionization. Radiation Physics and Chemistry, 203, 110595. | doi: | 10.1016/j.radphyschem.2022.110595 | "https://doi.org/10.1016/j.radphyschem.2022.110595"
Pinheiro et al., 2023.K- and L-shell theoretical fluorescence yields for the Fe isonuclear sequence.Radiation Physics and Chemistry, 203, 110594. | doi: | 10.1016/j.radphyschem.2022.110594 | "https://doi.org/10.1016/j.radphyschem.2022.110594"
Hönicke et al., 2023.Experimental and theoretical approaches for establishing the K-shell fluorescence yield of carbon. Radiation Physics and Chemistry, 202, 110501. | doi: | 10.1016/j.radphyschem.2022.110501 | "https://doi.org/10.1016/j.radphyschem.2022.110501"
Guerra et al., 2021.Fundamental Parameters Related to Selenium Kα and Kβ Emission X-ray Spectra. Atoms, 9(1), 8. | doi: | 10.3390/atoms9010008 | "https://doi.org/10.3390/atoms9010008"
Ito et al., 2020.Structure of Kα1,2- and Kβ1,3-emission x-ray spectra for Se, Y, and Zr. Physical Review A, 102(5), 052820. | doi: | 10.1103/PhysRevA.102.052820 | "https://doi.org/10.1103/PhysRevA.102.052820"
Martins et al., 2020.Overview and calculation of X-ray K-shell transition yields for comprehensive data libraries. X-Ray Spectrometry, 49(3), 398–423. | doi: | 10.1002/xrs.3123 | "https://doi.org/10.1002/xrs.3123"
Ménesguen et al., 2019.Precise x-ray energies of gadolinium determined by a combined experimental and theoretical approach. Journal of Quantitative Spectroscopy and Radiative Transfer, 236, 106585. | doi: | 10.1016/j.jqsrt.2019.106585 | "https://doi.org/10.1016/j.jqsrt.2019.106585"
Martins et al., 2020. Multiconfiguration Dirac-Fock calculations of Zn K-shell radiative and nonradiative transtitions. X-ray Spectrom. 49, 192-199. | doi: | 10.1002/xrs.3089 | "https://doi.org/10.1002/xrs.3089"
Zeeshan et al., 2019.Diagram, valence-to-core and hypersatellite Kβ X-ray transitions in metallic chromium. X-Ray Spectrometry, 48(5), 351–359. | doi: | 10.1002/xrs.3019 | "https://doi.org/10.1002/xrs.3019"
Ménesguen et al., 2018.A combined experimental and theoretical approach to determine X-ray atomic fundamental quantities of tin. X-Ray Spectrometry, 47(5), 341–351. | doi: | 10.1002/xrs.2948 | "https://doi.org/10.1002/xrs.2948"
Ito et al., 2018.Structure of high-resolution K β 1 , 3 x-ray emission spectra for the elements from Ca to Ge. Physical Review A, 97(5), 052505. | doi: | 10.1103/PhysRevA.97.052505 | "https://doi.org/10.1103/PhysRevA.97.052505"
Ménesguen et al., 2018.Experimental and theoretical determination of the L-fluorescence yields of bismuth. Metrologia, 55(5), 621–630. | doi: | 10.1088/1681-7575/aad1d6" | "https://doi.org/10.1088/1681-7575/aad1d6"
Guerra et al., 2018.Theoretical and experimental determination of K- and L-shell X-ray relaxation parameters in Ni. Physical Review A, 97(4), 042501. | doi: | 10.1103/PhysRevA.97.042501 | "https://doi.org/10.1103/PhysRevA.97.042501"
Guerra et al., 2017.Relativistic calculations of screening parameters and atomic radii of neutral atoms. Atomic Data and Nuclear Data Tables, 117–118, 439–457. | doi: | 10.1016/j.adt.2017.01.001 | "https://doi.org/10.1016/j.adt.2017.01.001"
Kup Aylikci et al., 2017. The investigation of K-shell fluorescence parameters of Zn-Fe alloys with different grain size and microstrain values. X-Ray Spectrometry, 46(4), 242–251. | doi: | 10.1002/xrs.2763 | "https://doi.org/10.1002/xrs.2763"
Sampaio et al., 2016.Relativistic Calculations of K-, L- and M-shell X-ray production cross-sections by electron impact for Ne, Ar, Kr, Xe, Rn and Uuo. Journal of Quantitative Spectroscopy and Radiative Transfer, 182, 87–93. | doi: | 10.1016/j.jqsrt.2016.05.012 | "https://doi.org/10.1016/j.jqsrt.2016.05.012"
Sampaio et al., 2016.Calculations of Photo-Induced X-ray Production Cross-sections in the energy range 1-150 keV and Average Fluorescence Yields for Zn, Cd and Hg. Atomic Data and Nuclear Data Tables, 111–112, 67–86. | doi: | 10.1016/j.adt.2016.02.001 | "https://doi.org/10.1016/j.adt.2016.02.001"
Sampaio et al., 2015. Relativistic calculations of atomic parameters in Ununoctium. Journal of Physics: Conference Series, 635(9), 092095. | doi: | 10.1088/1742-6596/635/9/092095 | "https://doi.org/10.1088/1742-6596/635/9/092095"
Marques et al., 2015.K-shell width, fluorescence yield, and Kβ/Kα intensity ratio calculation for Fe in the Dirac-Fock approach. Journal of Physics: Conference Series, 635(9), 092094. | doi: | 10.1088/1742-6596/635/9/092094 | "https://doi.org/10.1088/1742-6596/635/9/092094"
Guerra et al., 2015.Theoretical and experimental determination of L-shell decay rates, linewidths and fluorescence yields in Ge. Physical Review A, 92(2), 022507. | doi: | 10.1103/PhysRevA.92.022507 | "https://doi.org/10.1103/PhysRevA.92.022507"
Sampaio et al., 2015.Dirac-Fock calculations of K-, L-, and M-shell fluorescence and Coster-Kronig yields for Ne, Ar, Kr, Xe, Rn, and Uuo. Physical Review A, 91(5), 052507. | doi: | 10.1103/PhysRevA.91.052507 | "https://doi.org/10.1103/PhysRevA.91.052507" |